FV³ at the Hazardous Weather Testbed

Lucas Harris, S-J Lin, Matt Morin, and the GFDL FV³ team

Special thanks to Ming Xue, Tim Supinie, and Bill Putman

Community involvement with development from day 1

- Collaborating with OU-CAPS on convection-resolving model development
- Examination of a **very** early "version 0" of FV³-powered CRM by severe weather experts at SPC to get feedback from established modelers and users from the very beginning.
- Beginning development of stand-alone regional model with EMC, for university users and others with limited computing capacity
- Open invitation for interested parties to visit GFDL to work on fvGFS and other model development efforts. EMC has already committed three developers to visit GFDL.

fvGFS Design and setup

 $fvGFS = FV^3 + GFS Physics + NOAH land model$

13-km global and 13 & 3-km CONUS nest replace GFS Zhao-Carr with six-category GFDL microphysics

Uses IPDv4 designed at GFDL:

Prepared for future physics upgrades!

Model cold-started from GFS analyses.

No regional initialization.

fvGFS Design and setup

 $fvGFS = FV^3 + GFS Physics + NOAH land model$

Nested-grid uses neither shallow nor deep convection; global grid uses scale-aware SAS

GFS PBL scheme mixing artificially halved and inversion mixing disabled. (Still too much mixing?)

~19 minutes/day 3456 PEs on Gaea-c4, slightly more on xJet

Post-processed GRIB data usually at HWT before 09Z

fvGFS Development Strategy

13-km fvGFS has excellent global skill and shows regional improvements.

Global-to-regional refinement promises to remove limitations of limited-area models: **no lateral BCs from another model!**

Nesting allows us to use physics with global skill in global domain, and physics with regional skill in **targeted** regional domain.

Goal: Maintain large-scale skill while adding storm-scale information on 3-km nest

Can we get good qualitative skill for all seasons as well as useful qualitative storm-scale information??

Objective Skill Scores

(Warning: small sample size)

April 2017 (32 00Z cases)

Blue: 13-km global (NUOPC 3 version)

Red: 13 & 3-km global-to-CONUS (IPDv4 version)

Precipitation Events >= 1.0mm/6hr

Precipitation Events >= 5.0mm/6hr

Precipitation Events >= 10.0mm/6hr

18 May OK-KS High Risk

GOES-16 1-min band 2 visible

0-3 km UH; 2-5 km (HWT website) are more intense

16 May TX-OK outbreak

GOES-16 1-min band 2 visible: Rotating supercells and roll clouds

Dryline erodes very quickly in fvGFS. Likely a deficiency in PBL scheme.

NASA GEOS-5 at C3072 (3-km)

GEOS-5 uses the UKMO Lock PBL scheme for convective situation and the Louis (old ECMWF scheme) for stable condition; the cloud MP is by Bacmeister.

Extended range prediction

10 May Storms

Radar validation

Init 0506 00Z

12UTC 10 May 2017 +108h

00 UTC 11 May 2017 +120h

Init 0506 12Z

12UTC 10 May 2017 +096h

00 UTC 11 May 2017 +108h

Init 0507 00Z

12UTC 10 May 2017 +084h

00 UTC 11 May 2017 +096h

Init 0507 12Z

12UTC 10 May 2017 +072h

00 UTC 11 May 2017 +084h

Init 0508 00Z

12UTC 10 May 2017 +060h

00 UTC 11 May 2017 +072h

Init 0508 12Z

12UTC 10 May 2017 +048h

00 UTC 11 May 2017 +060h

Init 0509 00Z

12UTC 10 May 2017 +036h

00 UTC 11 May 2017 +048h

Init 0509 12Z

12UTC 10 May 2017 +024h

00 UTC 11 May 2017 +036h

Init 0510 00Z

12UTC 10 May 2017 +012h

00 UTC 11 May 2017 +024h

Composite Reflectivity from FV3-CAPS Using Thompson MP: init 0510 00Z

Updraft Helicity in fvGFS

FV³ design is *optimal* for representing Updraft Helicity: *vertical vorticity* and *vertical wind* are co-located as "vertically Lagrangian" Finite-Volume mean

The Lagrangian control-volume is bounded vertically by 2 Lagrangian surfaces

- Vertical wind is defined as <u>volume-mean</u> with edge values computed by a conservative cubic-spline reconstruction
- Vertical component of vorticity is also volume-mean as defined by the Stokes theorem (aka, the circulation theorem)

Base Reflectivity

Composite reflectivity

+30 hr, init 00z

0510

Hourly- and column-maximum updraft +30 hr, init 00z 0510

Base Reflectivity

Composite Reflectivity

Hour-max 2-5 km UH

Hour- and columnmax updraft

Towards a global-to-regional CAM

Building on critical NOAA partners and community collaborations with EMC, OU/CAPS, AOML, NASA, and Penn State

Thompson microphysics in fvGFS-CAPS looks much better in intensity! GFDL microphysics reasonable but intensities need improving—need modifications to hydrometeor fall scheme?

Better PBL scheme a **must**; the GFS PBL is suboptimal for CONUS. CAPS is implementing YSU PBL.

Initialization: Radar & satellite DA work proposed by OU and Penn State for 2018 for HWT/Hurricane

FV3GFS is a drastically new regional-global modeling system, which may require

Naive proposal for rapidly-updating multiple-cadence unified DA

All runs are unified two-way global-to-regional with at least one (CONUS) nest—both global and regional models stand to benefit

- :00—:05: Assimilate US radar (and satellite) in fvGFS once available Begin nowcast-timescale global-to-CONUS-to-WoF run(s)
- :05–:15: Assimilate global satellite and surface obs data once available Begin SREF/HREF-length global-to-CONUS runs
- :15—:00: Assimilate remaining slow global surface and radiosonde data Begin medium-range/extended-range run

Summary

- "Suitability" of FV³ for convective-scale forecasts has been demonstrated.
- Global-to-regional 2-way nesting maintains global skill while providing regional details
- Current FV³-based CRM is still primitive. Much much more work needs to be done, especially on the **physics** (cloud MP and PBL) and **DA** -- **these are areas** where the community can make great contributions!
- As demonstrated by 2017 HWT, fvGFS can mimic a regional model with a refined global grid. This removes the need for BCs and is more efficient than some operational regional models
- Unified model approach: systematic year-round evaluation will be crucial. Cannot tune for just one season for only one type of events. Must also consider TCs,